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LElTER TO THE EDITOR 

Structure of clusters generated by random walks 
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t Physical Sciences Laboratory, Division of Computer Research and Technology, National 
Institutes of Health, Bethesda, MD 20205, USA 
$ Physics Department, Bar Ilan University, Ramat-Gan, Israel 

Received 1 August 1984 

Abstract. We study the cluster structure resulting from a nearest-neighbour random walk 
embedded in a d-dimensional space. Each bond visited by the random walks is regarded 
as belonging to the cluster. The diffusion exponent an< the fracton dimensional of the 
fractal cluster in d = 3 is found to be d, = 3.5 f 0.1 and d = 0.57 0.02, using a method of 
exact enumeration of random walks on these fractals. 

The structure of statistical fractals is currently a subject of intensive study (Mandelbrot 
1982, Stanley and Coniglio 1982, Meakin 1983, Alexander and Orbach 1982, Havlin 
and Nossal 1984). The main properties of interest are the fractal dimensionality of 
the clusters df, transport properties characterised by diffusion and resistivity exponents ( r  - and d,, respectively) and the fracton dimensionality (Alexander and Orbach 1982) 
z=2df/d,. The possible relation between ‘static’ exponents like dr and a ‘dynamic’ 
one like d, is of special interest mostly because of the conjecture (Alexander and 
Orbach 1982, AO) relating these quantities for percolation clusters and the proposed 
extension (Meakin and Stanley 1983, Leyvraz and Stanley 1983) of this conjecture to 
other statistical fractals. 

In this work we study the fundamental problem of the fractal structure resulting 
from a nearest-neighbour random walk (RW) of N I  steps embedded in d-dimensional 
space. Each bond visited by the RW is regarded as a bond belonging to the cluster. 
The results for the limit N I  +CO in d = 1,2 and 4 are obvious. For d = 1 and 2 the RW 

fills hgmogeneously all space and therefore one just obtains the homogeneous space 
with d = dr = d. For d = 4 it is usually assumed that the RW intersects itself in a number 
of places which is negligible upon scaling for the purpose of calculating exponents 
(de Gennes 1979), thus the order of-ramification is essentially 2 and the resulting 
fractal is quasi-linear with df = 2 and d = 1. However for the limit N +  CO in d = 3, the 
intrinsic structure of the fractal resulting from the RW has not sjo far been established. 
Thus it is of interest to study the diffusion exponents, d, and d; of these fractals. We 
present scaling arguments as well as numerical data for d, and Moreover, we relate 
the results found here for diffusion with the results of some recent work (Banavar er 
al 1983) on the resistivity of a random walk by the Einstein relation. 

We study the diffusion exponent and the fracton dimensionality of a RW cluster 
by performing a second RW on it. The second RW whose starting point is uniformly 
distributed over the distinct sites visited by the first RW, is allowed to walk on any 
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lattice bond visited by the first walker. Thus the second RW walks in a substrate which 
is ramified, in contrast to the situation treated in earlier analyses (Kehr and Kutner 
1982). Assume that the fractal dimensionality of the RW substrate resulting from the 
first walker is d f  ( R d f  scales as the expected number of distinct sites visited where R 
is the linear span of the RW), and that the anomalous diffusion exponent of the second 
RW is d,, then 

- 
d = 2df /  d ,  ( 1 )  

is the fraction dimensionality (Alexander and Orbach 1982) of the RW substrate. 
We seek the function (R:( NI, N 2 ) )  giving the ened-to-end mean-square distance 

of an N2-steps RW performed on a substrate resulting from an NI-step RW. We first 
derive the exact result for the d = 1 case. In this case 

m 

(R:(Nl, N I ) =  j ( M L ,  N2))g(L, NI) dL (2) 
0 

where g( L, N , )  is the probability density for the span L of the substrate random walk 
and (R:(L, N 2 ) )  is the mean square end-to-end distance of an N2-step RW performed 
on the segment of length L. It can be shown that (Weiss and Rubin 1976) 

where U is the diffusion constant of the first walk. When the integral in equation (2) 
is evaluated, one finds 

(R:(N,, N2))  = $ ( a N I )  In ~ - - ~ . u ( N , N ~ ) ~ / *  

1 1 

128 
57 

We see that R: is of the form 

N(N1,  N2))= NfN,bf(N;/NI) ( 5 )  

with a = i, 6 = f and c = 1. We assume this scaling form applies for any dimensionality 
d with suitable values of a, 6, and c. In fact the limits of f ( x  = N;/ NI) for x + 0 and 
x + CO are easily obtained from simple arguments. For x + CO the number of steps taken 
by the second walker is much larger than that taken by the first. Its span therefore 
limits (R:) to be proportional to NI and independent of N2. For x+O the second 
walker is with overwhelming probability far from the edges of the fractal substrate 
resulting from the first RW, therefore (R:) = N:/“- independent of NI .  Thus, we have 

X a  x + o  
X+CO. 

f ( x )  = { X-b/C 

Substituting ( 6 )  into ( 5 )  yields 

NI +CO, N2 finite 
NI finite, N2 + CO. 

(7) 
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dw 
3.3 

3.2 

3.1 

Our earlier remarks therefore imply the relations 

c = 2/d, ,  $bd,+a = 1. 

Introducing these identities into (5) one gets 

- 

- 

- 
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(8) 

where 

x<< 1 
A = constant x>> 1. 

Thus we see that only a single exponent, 2/d, ,  suffices to describe limiting properties 
of (R i ) .  

For the cases d = 1 and d = 2 we expect, for N I  + 03, that d ,  = 2 since the substrate 
of the first walk is the entire space. However, the limit g ( x )  = x, with d ,  = 2, for x << 1 
in (10) did not occur in our simulations in d = 2 even for N I  = 20 000 steps. The RW 
in d = 3 was studied carefully in the range x << 1 for which R$= N2 follows from (9) 
and (10). In figure 1 we present data for d = 3 and x<< 1 obtained from calculating 
d ,  = a(log N2)/a(log &). The data includes walks with N ,  = 2000, 3000, 4000, 5000 
constituting the fractal RW substrates, on which (R: (Nl ,  N2))  was calculated by an 
exact enumeration procedure (Ben-Avraham and Havlin 1983, Magid et a1 1984), up 
to N2 = 2000. As seen from figuce 1, the value d ,  obtained is 3.5 f 0.1. Since d f  of the 
RW substrate is 2 we obtain d=2df /d ,=4 /3 .5=8 /7 ’  This result contradicts the 
suggested generalisation of the conjecture of AO that h-should equal ‘$ (Meakin and 
Stanley 1983, Leyvraz and Stanley 1983). This result for h was also calculated directly, 
by analysing the probability of return to the origin from which it was found that 
6 1 2  = 0.57 f 0.02. The results for d ,  and d= in different dimensions are summarised in 
table 1. 

3.6 c 

I 1  I I I I I I I I I  
0 400 803 1200 1600 2000 

n 

Figure 1. Results for d,, the diffusion exponent of the second RW on the cluster generated 
by the first RW as a function of n = N2 number of steps. The different symbols represent 
different values of N,: 0 for N ,  = 2000, A for N, =3OOO, 0 for N, =4000 and I3 for 
NI = SOOO. 
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Table 1. Values for the exponents discussed in the text. 

- 
d df dw d f 

1 2 2 1 1 
2 2 2 2 0 
3 2 3.5k0.1 i 1.5 

>4 2 4 1 2 

8 

It is of interest to compare our results with a recent study (Banavar et a1 1983) of 
the resistance between the end-to-end points of a RW. The resistance was found to be 

where N is the number of steps, x l ( d )  = f  for d = 1 and =ad for d = 2, 3, 4 for the 
case when overlapping bonds are regarded as a single resistor. In order to relate our 
results to (1 1 )  we use the relation (Alexander and Orbach 1982) 

d , = d , + [  

where [ is the resistivity exponent defined by r = r t  where r is the resistance between 
two bars of size R separated by a distance R. 

with f =  1, 1, 1.5,2 for d = 1,2,3,4 respectively. These results for [(or x l ( d ) )  can be 
obtained by using (12). For d = 1 it is obvious that d f =  1, d ,  = 2, r= 1. For d = 4 as 
mentioned earlier d f  = 2 ,  d ,  = 4, so that r= 2. The case of d = 3 is not trivial. In this 
case d f  = 2 and our result d ,  = 3.5 implies that r= 1.5. The case of d = 2 is not consistent 
with (12) since we argue that the first walk occupies the entire space, d ,  = 2, d f  = 2 
thus J +  0 in contrast to i= 1 obtained by Banavar et al (1983). This discrepancy may 
be explained by the fact that we study the case of NI +CO and Banavar et a1 (1983) 
the case of finite NI. However, our general scaling assumptions ( 5 )  and (9) do not 
predict another exponent for this case (NI = N J ,  it is rather represented as a crossover 
regime, (10). 

To conclude, we have dealt with the problem of diffusion on a RW substrate. We 
solve exactly the one-dimensional case which suggests the form of the scaling function 
for all d. For the non-trivial case of d = 3 we find d ,  2 3.5 and d = 9. These results 
are consistent with recent results on the resistivity for the RW substrate. 

The authors wish to acknowledge valuable discussions with A Coniglio and J Cardy. 
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