Structure of clusters generated by random walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17 L849
(http://iopscience.iop.org/0305-4470/17/15/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 07:47

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Structure of clusters generated by random walks

S Havlin $\dagger \S$, G H Weiss \dagger, D Ben-Avraham \ddagger and D Movshovitz \ddagger
\dagger Physical Sciences Laboratory, Division of Computer Research and Technology, National Institutes of Health, Bethesda, MD 20205, USA
\ddagger Physics Department, Bar Ilan University, Ramat-Gan, Israel

Received 1 August 1984

Abstract

We study the cluster structure resulting from a nearest-neighbour random walk embedded in a d-dimensional space. Each bond visited by the random walks is regarded as belonging to the cluster. The diffusion exponent and the fracton dimensional of the fractal cluster in $d=3$ is found to be $d_{\mathrm{w}}=3.5 \pm 0.1$ and $\overline{\bar{d}}=0.57 \supseteq 0.02$, using a method of exact enumeration of random walks on these fractals.

The structure of statistical fractals is currently a subject of intensive study (Mandelbrot 1982, Stanley and Coniglio 1982, Meakin 1983, Alexander and Orbach 1982, Havlin and Nossal 1984). The main properties of interest are the fractal dimensionality of the clusters d_{f}, transport properties characterised by diffusion and resistivity exponents ($\bar{\zeta}$ and d_{w}, respectively) and the fracton dimensionality (Alexander and Orbach 1982) $\overline{\bar{d}}=2 d_{\mathrm{f}} / d_{\mathrm{w}}$. The possible relation between 'static' exponents like d_{f} and a 'dynamic' one like d_{w} is of special interest mostly because of the conjecture (Alexander and Orbach 1982, AO) relating these quantities for percolation clusters and the proposed extension (Meakin and Stanley 1983, Leyvraz and Stanley 1983) of this conjecture to other statistical fractals.

In this work we study the fundamental problem of the fractal structure resulting from a nearest-neighbour random walk (RW) of N_{1} steps embedded in d-dimensional space. Each bond visited by the Rw is regarded as a bond belonging to the cluster. The results for the limit $N_{1} \rightarrow \infty$ in $d=1,2$ and 4 are obvious. For $d=1$ and 2 the Rw fills homogeneously all space and therefore one just obtains the homogeneous space with $\bar{d}=d_{\mathrm{f}}=d$. For $d=4$ it is usually assumed that the Rw intersects itself in a number of places which is negligible upon scaling for the purpose of calculating exponents (de Gennes 1979), thus the order of ramification is essentially 2 and the resulting fractal is quasi-linear with $d_{\mathrm{f}}=2$ and $\overline{\bar{d}}=1$. However for the limit $N \rightarrow \infty$ in $d=3$, the intrinsic structure of the fractal resulting from the Rw has not so far been established. Thus it is of interest to study the diffusion exponents, d_{w} and $\overline{\bar{d}}$, of these fractals. We present scaling arguments as well as numerical data for d_{w} and $\overline{\bar{d}}$. Moreover, we relate the results found here for diffusion with the results of some recent work (Banavar et al 1983) on the resistivity of a random walk by the Einstein relation.

We study the diffusion exponent and the fracton dimensionality of a RW cluster by performing a second RW on it. The second rw whose starting point is uniformly distributed over the distinct sites visited by the first RW, is allowed to walk on any

[^0]lattice bond visited by the first walker. Thus the second Rw walks in a substrate which is ramified, in contrast to the situation treated in earlier analyses (Kehr and Kutner 1982). Assume that the fractal dimensionality of the rw substrate resulting from the first walker is d_{f} ($R^{d_{i}}$ scales as the expected number of distinct sites visited where R is the linear span of the Rw), and that the anomalous diffusion exponent of the second RW is d_{w}, then
\[

$$
\begin{equation*}
\overline{\bar{d}}=2 d_{\mathrm{f}} / d_{\mathrm{w}} \tag{1}
\end{equation*}
$$

\]

is the fraction dimensionality (Alexander and Orbach 1982) of the Rw substrate.
We seek the function $\left\langle R_{2}^{2}\left(N_{1}, N_{2}\right)\right\rangle$ giving the ened-to-end mean-square distance of an N_{2}-steps RW performed on a substrate resulting from an N_{1}-step Rw. We first derive the exact result for the $d=1$ case. In this case

$$
\begin{equation*}
\left\langle R_{2}^{2}\left(N_{1}, N_{2}\right)\right\rangle=\int_{0}^{\infty}\left\langle R_{2}^{2}\left(L, N_{2}\right)\right\rangle g\left(L, N_{1}\right) \mathrm{d} L \tag{2}
\end{equation*}
$$

where $g\left(L, N_{1}\right)$ is the probability density for the span L of the substrate random walk and $\left\langle R_{2}^{2}\left(L, N_{2}\right)\right\rangle$ is the mean square end-to-end distance of an N_{2}-step RW performed on the segment of length L. It can be shown that (Weiss and Rubin 1976)

$$
\begin{equation*}
g\left(L, N_{1}\right) \approx \frac{8}{\left(4 \pi \sigma N_{1}\right)^{1 / 2}} \sum_{j=1}^{\infty}(-)^{j+1} j^{2} \exp \left[-j^{2} L^{2} /\left(4 \sigma N_{1}\right)\right] \tag{3}
\end{equation*}
$$

where σ is the diffusion constant of the first walk. When the integral in equation (2) is evaluated, one finds

$$
\begin{align*}
\left\langle R_{2}^{2}\left(N_{1}, N_{2}\right)\right\rangle= & =\frac{4}{3}\left(\sigma N_{1}\right) \ln 2-\frac{128}{\pi^{3}} \sigma\left(N_{1} N_{2}\right)^{1 / 2} \\
& \times\left(\sum_{l=0}^{\infty} \frac{1}{(2 l+1)^{3}} \frac{1}{1+\exp \left[\pi(2 l+1)\left(N_{2} / N_{1}\right)^{1 / 2}\right]}\right. \\
& \left.+\frac{1}{\pi} \frac{1}{(2 l+1)^{4}}\left(\frac{N_{1}}{N_{2}}\right)^{1 / 2} \ln \left(1+\exp \left[-\pi(2 l+1)\left(\frac{N_{2}}{N_{1}}\right)^{1 / 2}\right]\right)\right) \tag{4}
\end{align*}
$$

We see that R_{1}^{2} is of the form

$$
\begin{equation*}
\left\langle R_{2}^{2}\left(N_{1}, N_{2}\right)\right\rangle \approx N_{1}^{a} N_{2}^{b} f\left(N_{2}^{c} / N_{1}\right) \tag{5}
\end{equation*}
$$

with $a=\frac{1}{2}, b=\frac{1}{2}$ and $c=1$. We assume this scaling form applies for any dimensionality d with suitable values of a, b, and c. In fact the limits of $f\left(x=N_{2}^{c} / N_{1}\right)$ for $x \rightarrow 0$ and $x \rightarrow \infty$ are easily obtained from simple arguments. For $x \rightarrow \infty$ the number of steps taken by the second walker is much larger than that taken by the first. Its span therefore limits $\left\langle R_{2}^{2}\right\rangle$ to be proportional to N_{1} and independent of N_{2}. For $x \rightarrow 0$ the second walker is with overwhelming probability far from the edges of the fractal substrate resulting from the first RW , therefore $\left\langle R_{2}^{2}\right\rangle \approx N_{2}^{2 / d_{\mathrm{w}}}$ independent of N_{1}. Thus, we have

$$
f(x)= \begin{cases}x^{a} & x \rightarrow 0 \tag{6}\\ x^{-b / c} & x \rightarrow \infty\end{cases}
$$

Substituting (6) into (5) yields

$$
\left\langle R_{2}^{2}\right\rangle \approx \begin{cases}N_{2}^{b+c a} & N_{1} \rightarrow \infty, N_{2} \text { finite } \tag{7}\\ N_{1}^{(b+c a) / c} & N_{1} \text { finite, } N_{2} \rightarrow \infty\end{cases}
$$

Our earlier remarks therefore imply the relations

$$
\begin{equation*}
c=2 / d_{\mathrm{w}}, \quad \frac{1}{2} b d_{\mathrm{w}}+a=1 . \tag{8}
\end{equation*}
$$

Introducing these identities into (5) one gets

$$
\begin{equation*}
\left\langle R_{2}^{2}\right\rangle / N_{\mathrm{t}} \approx\left(N_{2}^{2 / d_{w}} / N_{\mathrm{t}}\right)^{b d_{\omega} / 2} f\left(N_{2}^{2 / d_{w}} / N_{\mathrm{i}}\right) \equiv g\left(N_{2}^{2 / \alpha_{w} /} N_{\mathrm{t}}\right), \tag{9}
\end{equation*}
$$

where

$$
g(x) \approx \begin{cases}x & x \ll 1 \tag{10}\\ A=\text { constant } & x \gg 1\end{cases}
$$

Thus we see that only a single exponent, $2 / d_{w}$, suffices to describe limiting properties of $\left\langle R_{2}^{2}\right\rangle$.

For the cases $d=1$ and $d=2$ we expect, for $N_{1} \rightarrow \infty$, that $d_{w}=2$ since the substrate of the first walk is the entire space. However, the limit $g(x) \approx x$, with $d_{w}=2$, for $x \ll 1$ in (10) did not occur in our simulations in $d=2$ even for $N_{1}=20000$ steps. The rw in $d=3$ was studied carefully in the range $x \ll 1$ for which $R_{2}^{d} \approx N_{2}$ follows from (9) and (10). In figure 1 we present data for $d=3$ and $x \ll 1$ obtained from calculating $d_{\mathrm{w}}=\partial\left(\log N_{2}\right) / \partial\left(\log R_{2}\right)$. The data includes walks with $N_{1}=2000,3000,4000,5000$ constituting the fractal rw substrates, on which $\left\langle R_{2}^{2}\left(N_{1}, N_{2}\right)\right\rangle$ was calculated by an exact enumeration procedure (Ben-Avraham and Havlin 1983, Magid et al 1984), up to $N_{2}=2000$. As seen from figure 1 , the value d_{w} obtained is 3.5 ± 0.1. Since d_{f} of the Rw substrate is 2 we obtain $\bar{d}=2 d_{\mathrm{f}} / d_{\mathrm{w}} \simeq 4 / 3.5 \simeq 8 / 7$. This result contradicts the suggested generalisation of the conjecture of AO that \bar{d} should equal $\frac{4}{3}$ (Meakin and Stanley 1983, Leyvraz and Stanley 1983). This result for $\overline{\bar{d}}$ was also calculated directly, by analysing the probability of return to the origin from which it was found that $\overline{\bar{d}} / 2=0.57 \pm 0.02$. The results for d_{w} and $\overline{\bar{d}}$ in different dimensions are summarised in table 1 .

Figure 1. Results for d_{w}, the diffusion exponent of the second RW on the cluster generated by the first RW as a function of $n=N_{2}$ number of steps. The different symbols represent different values of $N_{1}: \diamond$ for $N_{1}=2000, \Delta$ for $N_{1}=3000$, O for $N_{1}=4000$ and \square for $N_{1}=5000$.

Table 1. Values for the exponents discussed in the text.

d	d_{i}	d_{w}	$\overline{\bar{d}}$	$\bar{\zeta}$
1	2	2	1	1
2	2	2	2	0
3	2	3.5 ± 0.1	$\frac{8}{7}$	1.5
>4	2	4	1	2

It is of interest to compare our results with a recent study (Banavar et al 1983) of the resistance between the end-to-end points of a RW. The resistance was found to be

$$
\begin{equation*}
r(N, d) \approx N^{x_{1}(d)} \tag{11}
\end{equation*}
$$

where N is the number of steps, $x_{1}(d)=\frac{1}{2}$ for $d=1$ and $=\frac{1}{4} d$ for $d=2,3,4$ for the case when overlapping bonds are regarded as a single resistor. In order to relate our results to (11) we use the relation (Alexander and Orbach 1982)

$$
\begin{equation*}
d_{w}=d_{f}+\bar{\zeta} \tag{12}
\end{equation*}
$$

where $\bar{\zeta}$ is the resistivity exponent defined by $r \approx r^{\bar{\zeta}}$ where r is the resistance between two bars of size R separated by a distance R.

$$
\begin{equation*}
r(N, d) \approx R^{2 x_{1}(d)} \approx R^{\bar{\xi}(d)} \tag{13}
\end{equation*}
$$

with $\bar{\zeta}=1,1,1.5,2$ for $d=1,2,3,4$ respectively. These results for $\bar{\zeta}$ (or $x_{1}(d)$) can be obtained by using (12). For $d=1$ it is obvious that $d_{\mathrm{f}}=1, d_{\mathrm{w}}=2, \bar{\zeta}=1$. For $d=4$ as mentioned earlier $d_{\mathrm{f}}=2, d_{\mathrm{w}}=4$, so that $\bar{\zeta}=2$. The case of $d=3$ is not trivial. In this case $d_{\mathrm{f}}=2$ and our result $d_{\mathrm{w}} \cong 3.5$ implies that $\bar{\zeta}=1.5$. The case of $d=2$ is not consistent with (12) since we argue that the first walk occupies the entire space, $d_{\mathrm{w}}=2, d_{\mathrm{f}}=2$ thus $\zeta \rightarrow 0$ in contrast to $\bar{\zeta}=1$ obtained by Banavar et al (1983). This discrepancy may be explained by the fact that we study the case of $N_{1} \rightarrow \infty$ and Banavar et al (1983) the case of finite N_{1}. However, our general scaling assumptions (5) and (9) do not predict another exponent for this case ($N_{1} \approx N_{2}$), it is rather represented as a crossover regime, (10).

To conclude, we have dealt with the problem of diffusion on a Rw substrate. We solve exactly the one-dimensional case which suggests the form of the scaling function for all d. For the non-trivial case of $d=3$ we find $d_{\mathrm{w}} \simeq 3.5$ and $\bar{d} \simeq \frac{8}{7}$. These results are consistent with recent results on the resistivity for the Rw substrate.

The authors wish to acknowledge valuable discussions with A Coniglio and J Cardy.

References

Alexander S and Orbach R 1982 J. Phys. Lett. 43 L625
Banavar J R, Harris A B and Koplik J 1983 Phys. Rev. Lett. 511115
Ben-Avraham D and Havlin S 1983 J. Phys. A: Math. Gen. 162559
de Gennes P G 1979 Scaling Concept in Polymer Physics (Cornell: Cornell University Press)
Havlin S and Nossal R 1984 J. Phys. A: Math. Gen. 17 L427
Kehr K W and Kutner R 1982 Physica 110A 535
Leyvraz F and Stanley H E 1983 Phys. Rev. Lett. 512048

Magid I, Ben-Avraham D, Havlin S and Stanley H E 1984 Phys. Rev. 13 to appear
Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman)
Meakin P 1983 Phys. Rev. Lett. 511119
Meakin P and Stanley H E 1983 Phys. Rev. Lett. 511457
Stanley H E and Coniglio A 1982 in Percolation Clusters and Structures (Ann. Israel Phys. Soc.) ed. J Adler, G Deutcher and R Zallen
Weiss G H and Rubin R J 1976 J. Stat. Phys. 14335

[^0]: § Permanent address: Department of Physics, Bar-Ilan University, Ramat-Gan, Israel.

